Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 611
Filter
1.
Int J Mol Sci ; 24(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139097

ABSTRACT

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that affects older premutation carriers (55-200 CGG repeats) of the fragile X gene. Despite the high prevalence of the FXTAS disorder, neuropathology studies of individuals affected by FXTAS are limited. We performed hematoxylin and eosin (H&E) staining in the hippocampus of 26 FXTAS cases and analyzed the tissue microscopically. The major neuropathological characteristics were white matter disease, intranuclear inclusions in neurons and astrocytes, and neuron loss. Astrocytes contained more and larger inclusions than neurons. There was a negative correlation between age of death and CGG repeat length in cases over the age of 60. The number of astroglial inclusions (CA3 and dentate gyrus) and the number of CA3 neuronal inclusions increased with elevated CGG repeat length. In the two cases with a CGG repeat size less than 65, FXTAS intranuclear inclusions were not present in the hippocampus, while in the two cases with less than 70 (65-70) CGG repeat expansion, neurons and astrocytes with inclusions were occasionally identified in the CA1 sub-region. These findings add hippocampus neuropathology to the previously reported changes in other areas of the brain in FXTAS patients, with implications for understanding FXTAS pathogenesis.


Subject(s)
Fragile X Syndrome , Tremor , Humans , Tremor/genetics , Gray Matter/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Fragile X Syndrome/pathology , Ataxia/genetics , Hippocampus/metabolism , Trinucleotide Repeat Expansion
2.
Int Rev Neurobiol ; 173: 187-215, 2023.
Article in English | MEDLINE | ID: mdl-37993178

ABSTRACT

Astrocytes are highly involved in a multitude of developmental processes that are known to be dysregulated in Fragile X Syndrome. Here, we examine these processes individually and review the roles astrocytes play in contributing to the pathology of this syndrome. As a growing area of interest in the field, new and exciting insight is continually emerging. Understanding these glial-mediated roles is imperative for elucidating the underlying molecular mechanisms at play, not only in Fragile X Syndrome, but also other ASD-related disorders. Understanding these roles will be central to the future development of effective, clinically-relevant treatments of these disorders.


Subject(s)
Fragile X Syndrome , Humans , Fragile X Syndrome/pathology , Fragile X Mental Retardation Protein , Astrocytes
3.
Cells ; 12(19)2023 09 26.
Article in English | MEDLINE | ID: mdl-37830578

ABSTRACT

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that appears in adult FMR1 premutation carriers. The neuropathological hallmark of FXTAS is an intranuclear inclusion in neurons and astrocytes. Nearly 200 different proteins have been identified in FXTAS inclusions, being the small ubiquitin-related modifier 2 (SUMO2), ubiquitin and p62 the most highly abundant. These proteins are components of the protein degradation machinery. This study aimed to characterize SUMO2/3 expression levels and autophagy process in human postmortem brain samples and skin fibroblast cultures from FXTAS patients. Results revealed that FXTAS postmortem brain samples are positive for SUMO2/3 conjugates and supported the idea that SUMO2/3 accumulation is involved in inclusion formation. Insights from RNA-sequencing data indicated that SUMOylation processes are significantly upregulated in FXTAS samples. In addition, the analysis of the autophagy flux showed the accumulation of p62 protein levels and autophagosomes in skin fibroblasts from FXTAS patients. Similarly, gene set analysis evidenced a significant downregulation in gene ontology terms related to autophagy in FXTAS samples. Overall, this study provides new evidence supporting the role of SUMOylation and autophagic processes in the pathogenic mechanisms underlying FXTAS.


Subject(s)
Fragile X Syndrome , Tremor , Adult , Humans , Tremor/genetics , Tremor/metabolism , Tremor/pathology , Ubiquitin/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/pathology , Ataxia/pathology , Autophagy , Small Ubiquitin-Related Modifier Proteins/metabolism
4.
Cells ; 12(14)2023 07 20.
Article in English | MEDLINE | ID: mdl-37508562

ABSTRACT

Brain changes at the end-stage of fragile X-associated tremor/ataxia syndrome (FXTAS) are largely unknown due to mobility impairment. We conducted a postmortem MRI study of FXTAS to quantify cerebrovascular disease, brain atrophy and iron content, and examined their relationships using principal component analysis (PCA). Intracranial hemorrhage (ICH) was observed in 4/17 FXTAS cases, among which one was confirmed by histologic staining. Compared with seven control brains, FXTAS cases showed higher ratings of T2-hyperintensities (indicating cerebral small vessel disease) in the cerebellum, globus pallidus and frontoparietal white matter, and significant atrophy in the cerebellar white matter, red nucleus and dentate nucleus. PCA of FXTAS cases revealed negative associations of T2-hyperintensity ratings with anatomic volumes and iron content in the white matter, hippocampus and amygdala, that were independent from a highly correlated number of regions with ICH and iron content in subcortical nuclei. Post-hoc analysis confirmed PCA findings and further revealed increased iron content in the white matter, hippocampus and amygdala in FXTAS cases compared to controls, after adjusting for T2-hyperintensity ratings. These findings indicate that both ischemic and hemorrhagic brain damage may occur in FXTAS, with the former being marked by demyelination/iron depletion and atrophy, and the latter by ICH and iron accumulation in basal ganglia.


Subject(s)
Cerebrovascular Disorders , Fragile X Syndrome , Humans , Tremor/diagnostic imaging , Tremor/pathology , Iron , Ataxia/diagnostic imaging , Ataxia/pathology , Fragile X Syndrome/diagnostic imaging , Fragile X Syndrome/pathology , Magnetic Resonance Imaging , Atrophy
5.
Proc Natl Acad Sci U S A ; 120(23): e2300052120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252957

ABSTRACT

Short trinucleotide expansions at the FMR1 locus are associated with the late-onset condition fragile X-associated tremor/ataxia syndrome (FXTAS), which shows very different clinical and pathological features from fragile X syndrome (associated with longer expansions), with no clear molecular explanation for these marked differences. One prevailing theory posits that the shorter, premutation expansion uniquely causes extreme neurotoxic increases in FMR1 mRNA (i.e., four to eightfold increases), but evidence to support this hypothesis is largely derived from analysis of peripheral blood. We applied single-nucleus RNA sequencing to postmortem frontal cortex and cerebellum from 7 individuals with premutation and matched controls (n = 6) to assess cell type-specific molecular neuropathology. We found only modest upregulation (~1.3-fold) of FMR1 in some glial populations associated with premutation expansions. In premutation cases, we also identified decreased astrocyte proportions in the cortex. Differential expression and gene ontology analysis demonstrated altered neuroregulatory roles of glia. Using network analyses, we identified cell type-specific and region-specific patterns of FMR1 protein target gene dysregulation unique to premutation cases, with notable network dysregulation in the cortical oligodendrocyte lineage. We used pseudotime trajectory analysis to determine how oligodendrocyte development was altered and identified differences in early gene expression in oligodendrocyte trajectories in premutation cases specifically, implicating early cortical glial developmental perturbations. These findings challenge dogma regarding extremely elevated FMR1 increases in FXTAS and implicate glial dysregulation as a critical facet of premutation pathophysiology, representing potential unique therapeutic targets directly derived from the human condition.


Subject(s)
Fragile X Syndrome , Humans , Fragile X Syndrome/pathology , Tremor/genetics , Trinucleotide Repeat Expansion , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Ataxia/genetics , Ataxia/pathology , Brain/metabolism , Astrocytes/metabolism
6.
Biol Pharm Bull ; 46(2): 139-146, 2023.
Article in English | MEDLINE | ID: mdl-36724941

ABSTRACT

Repeat-associated non-AUG (RAN) translation is a pathogenic mechanism in which repetitive sequences are translated into aggregation-prone proteins from multiple reading frames, even without a canonical AUG start codon. Since its discovery in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1), RAN translation is now known to occur in the context of 12 disease-linked repeat expansions. This review discusses recent advances in understanding the regulatory mechanisms controlling RAN translation and its contribution to the pathophysiology of repeat expansion diseases. We discuss the key findings in the context of Fragile X Tremor Ataxia Syndrome (FXTAS), a neurodegenerative disorder caused by a CGG repeat expansion in the 5' untranslated region of FMR1.


Subject(s)
Fragile X Syndrome , Neurodegenerative Diseases , Humans , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Fragile X Syndrome/pathology , Ataxia/metabolism , Ataxia/pathology , Tremor/genetics , Tremor/metabolism , Tremor/pathology
7.
Nihon Yakurigaku Zasshi ; 158(1): 30-33, 2023.
Article in Japanese | MEDLINE | ID: mdl-36596485

ABSTRACT

Repeat expansion diseases are caused by the aberrant repeat expansions within specific genes. RNAs derived from aberrant repeat sequences form non-canonical secondary structures, contributing to induce cell toxicity. In particular, RNA G-quadruplexes (G4RNAs) formed in guanine-rich repeat expanded RNAs trigger neurodegeneration. We have previously shown that the expanded CGG repeat-derived G4RNAs initiate aggregation of FMRpolyG, a neuropathogenic protein generated by repeat-associated non-AUG (RAN) translation in Fragile X-associated tremor/ataxia syndrome (FXTAS). In this review, we describe the neuropathological mechanism attributed to G4RNAs in guanine-rich repeat expansion diseases, including FXTAS.


Subject(s)
Fragile X Syndrome , Trinucleotide Repeat Expansion , Humans , Trinucleotide Repeat Expansion/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Fragile X Syndrome/pathology , Ataxia/genetics , Ataxia/metabolism , Ataxia/pathology , RNA
8.
Mol Neurobiol ; 60(4): 2051-2061, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36598648

ABSTRACT

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by an expansion of 55-200 CGG repeats (premutation) in the 5'-UTR of the FMR1 gene. Bidirectional transcription at FMR1 locus has been demonstrated and specific alternative splicing of the Antisense FMR1 (ASFMR1) gene has been proposed to have a contributing role in the pathogenesis of FXTAS. The structure of ASFMR1 gene is still uncharacterized and it is currently unknown how many isoforms of the gene are expressed and at what level in premutation carriers (PM) and if they may contribute to the premutation pathology. In this study, we characterized the ASFMR1 gene structure and the transcriptional landscape by using PacBio SMRT sequencing with target enrichment (IDT customized probe panel). We identified 45 ASFMR1 isoforms ranging in sizes from 523 bp to 6 Kb, spanning approximately 59 kb of genomic DNA. Multiplexing and sequencing of six human brain samples from PM samples and normal control (HC) were carried out on the PacBio Sequel platform. We validated the presence of these isoforms by qRT-PCR and Sanger sequencing and characterized the acceptor and donor splicing site consensus sequences. Consistent with previous studies conducted in other tissue types, we found a high expression of ASFMR1 isoform Iso131bp in brain samples of PM as compared to HC, while no differences in expression levels were observed for the newly identified isoforms IsoAS1 and IsoAS2. We investigated the role of the splicing regulatory protein Sam68 which we did not observe in the alternative splicing of the ASFMR1 gene. Our study provides a useful insight into the structure of ASFMR1 gene and transcriptional landscape along with the expression pattern of various newly identified novel isoforms and on their potential role in premutation pathology.


Subject(s)
Fragile X Syndrome , Trinucleotide Repeat Expansion , Humans , Alternative Splicing , Fragile X Syndrome/pathology , Protein Isoforms/metabolism , Fragile X Mental Retardation Protein/metabolism
9.
J Proteomics ; 269: 104720, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36089189

ABSTRACT

Loss of fragile X retardation protein (FMRP) leads to fragile X syndrome (FXS), a common cause of inherited intellectual disability. Protein lysine acetylation (K-ac), a reversible post-translational modification of proteins, is associated with the regulation of brain development and neuropathies. However, a comprehensive hippocampal K-ac protein profile in response to FMRP deficiency has not been reported until now. Using LC-MS/MS to analyze the enriched K-ac peptides, this study identified 1629 K-ac hits across 717 proteins in the mouse hippocampus, and these proteins were enriched in several metabolic processes. Of them, 51 K-ac hits across 45 proteins were significantly changed upon loss of FMRP. These altered K-ac proteins were enriched in energy metabolic processes including carboxylic acid metabolism process, aerobic respiration and citrate cycle, linking with several neurological disorders such as lactic acidosis, Lewy body disease, Leigh disease and encephalopathies. In the mouse hippocampus and the hippocampal HT-22 cells, FMRP deficiency could induce altered K-ac modification of several key enzymes, decrease in ATP and increase in lactate. Thus, this study identified a global hippocampal lysine acetylome and an altered K-ac protein profile upon loss of FMRP linked to abnormal energy metabolism, implicating in the pathogenesis of FXS. SIGNIFICANCE: Fragile X syndrome (FXS) is a common inherited neurodevelopment disorder characterized by intellectual disability and an increased risk for autism spectrum disorder. FXS is resulted from silencing of the FMR1 gene, which induces loss of its encoding protein FMRP. Molecular and metabolic changes of Fmr1-null animal models of FXS have been identified to potentially contribute to the pathogenesis of FXS. Here, we used a TMT-labeled quantitative proteomic analysis of the peptides enriched by anti-K-ac antibodies and identified a global K-ac protein profile in the mouse hippocampus with a total of 1629 K-ac peptides on 717 proteins. Of them, 51 K-ac peptides regarding 45 proteins altered in response to loss of FMRP, which were enriched in energy metabolic processes and were implicated in several neurological disorders. Thus this study for the first time provides a global hippocampal lysine acetylome upon FMRP deficiency linked to abnormal metabolic pathways, which may contribute to pathogenic mechanism of FXS.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Intellectual Disability , Adenosine Triphosphate/metabolism , Animals , Carboxylic Acids , Chromatography, Liquid , Citrates , Disease Models, Animal , Energy Metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Fragile X Syndrome/pathology , Hippocampus/metabolism , Lactates , Lysine/metabolism , Mice , Mice, Knockout , Proteomics , Tandem Mass Spectrometry
10.
Acta Neuropathol Commun ; 10(1): 79, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35642014

ABSTRACT

Recently, inspired by the similar clinical and pathological features shared with fragile X-associated tremor/ataxia syndrome (FXTAS), abnormal expansion of CGG repeats in the 5' untranslated region has been found in neuronal intranuclear inclusion disease (NIID), oculopharyngeal myopathy with leukoencephalopathy (OPML), and oculopharyngodistal myopathy (OPDMs). Although the upstream open reading frame has not been elucidated in OPML and OPDMs, polyglycine (polyG) translated by expanded CGG repeats is reported to be as a primary pathogenesis in FXTAS and NIID. Collectively, these findings indicate a new disease entity, the polyG diseases. In this review, we state the common clinical manifestations, pathological features, mechanisms, and potential therapies in these diseases, and provide preliminary opinions about future research in polyG diseases.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Ataxia/complications , Fragile X Syndrome/pathology , Humans , Intranuclear Inclusion Bodies , Muscular Dystrophies , Neurodegenerative Diseases , Peptides , Tremor
11.
Mol Autism ; 13(1): 29, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35768828

ABSTRACT

BACKGROUND: Fragile X syndrome (FXS), the most common genetic cause of autism spectrum disorder and intellectual disability, is caused by the lack of fragile X mental retardation protein (FMRP) expression. FMRP is an mRNA binding protein with functions in mRNA transport, localization, and translational control. In Fmr1 knockout mice, dysregulated translation has been linked to pathophysiology, including abnormal synaptic function and dendritic morphology, and autistic-like behavioral phenotypes. The role of FMRP in morphology and function of excitatory neurons has been well studied in mice lacking Fmr1, but the impact of Fmr1 deletion on inhibitory neurons remains less characterized. Moreover, the contribution of FMRP in different cell types to FXS pathophysiology is not well defined. We sought to characterize whether FMRP loss in parvalbumin or somatostatin-expressing neurons results in FXS-like deficits in mice. METHODS: We used Cre-lox recombinase technology to generate two lines of conditional knockout mice lacking FMRP in either parvalbumin or somatostatin-expressing cells and carried out a battery of behavioral tests to assess motor function, anxiety, repetitive, stereotypic, social behaviors, and learning and memory. In addition, we used fluorescent non-canonical amino acid tagging along with immunostaining to determine whether de novo protein synthesis is dysregulated in parvalbumin or somatostatin-expressing neurons. RESULTS: De novo protein synthesis was elevated in hippocampal parvalbumin and somatostatin-expressing inhibitory neurons in Fmr1 knockout mice. Cell type-specific deletion of Fmr1 in parvalbumin-expressing neurons resulted in anxiety-like behavior, impaired social behavior, and dysregulated de novo protein synthesis. In contrast, deletion of Fmr1 in somatostatin-expressing neurons did not result in behavioral abnormalities and did not significantly impact de novo protein synthesis. This is the first report of how loss of FMRP in two specific subtypes of inhibitory neurons is associated with distinct FXS-like abnormalities. LIMITATIONS: The mouse models we generated are limited by whole body knockout of FMRP in parvalbumin or somatostatin-expressing cells and further studies are needed to establish a causal relationship between cellular deficits and FXS-like behaviors. CONCLUSIONS: Our findings indicate a cell type-specific role for FMRP in parvalbumin-expressing neurons in regulating distinct behavioral features associated with FXS.


Subject(s)
Autism Spectrum Disorder , Fragile X Mental Retardation Protein , Fragile X Syndrome , Neurons , Animals , Autism Spectrum Disorder/metabolism , Disease Models, Animal , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Fragile X Syndrome/pathology , Mice , Mice, Knockout , Neurons/metabolism , Neurons/pathology , Parvalbumins/metabolism , RNA, Messenger/metabolism , Somatostatin/metabolism
12.
Int J Mol Sci ; 23(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35216055

ABSTRACT

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the full mutation as well as highly localized methylation of the fragile X mental retardation 1 (FMR1) gene on the long arm of the X chromosome. Children with FXS are commonly co-diagnosed with Autism Spectrum Disorder, attention and learning problems, anxiety, aggressive behavior and sleep disorder, and early interventions have improved many behavior symptoms associated with FXS. In this review, we performed a literature search of original and review articles data of clinical trials and book chapters using MEDLINE (1990-2021) and ClinicalTrials.gov. While we have reviewed the biological importance of the fragile X mental retardation protein (FMRP), the FXS phenotype, and current diagnosis techniques, the emphasis of this review is on clinical interventions. Early non-pharmacological interventions in combination with pharmacotherapy and targeted treatments aiming to reverse dysregulated brain pathways are the mainstream of treatment in FXS. Overall, early diagnosis and interventions are fundamental to achieve optimal clinical outcomes in FXS.


Subject(s)
Fragile X Syndrome/genetics , Animals , Brain/pathology , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/pathology , Humans , Phenotype
13.
Nat Rev Neurol ; 18(3): 145-157, 2022 03.
Article in English | MEDLINE | ID: mdl-35022573

ABSTRACT

Non-coding CGG repeat expansions cause multiple neurodegenerative disorders, including fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, oculopharyngeal myopathy with leukodystrophy, and oculopharyngodistal myopathy. The underlying genetic causes of several of these diseases have been identified only in the past 2-3 years. These expansion disorders have substantial overlapping clinical, neuroimaging and histopathological features. The shared features suggest common mechanisms that could have implications for the development of therapies for this group of diseases - similar therapeutic strategies or drugs may be effective for various neurodegenerative disorders induced by non-coding CGG expansions. In this Review, we provide an overview of clinical and pathological features of these CGG repeat expansion diseases and consider the likely pathological mechanisms, including RNA toxicity, CGG repeat-associated non-AUG-initiated translation, protein aggregation and mitochondrial impairment. We then discuss future research needed to improve the identification and diagnosis of CGG repeat expansion diseases, to improve modelling of these diseases and to understand their pathogenesis. We also consider possible therapeutic strategies. Finally, we propose that CGG repeat expansion diseases may represent manifestations of a single underlying neuromyodegenerative syndrome in which different organs are affected to different extents depending on the gene location of the repeat expansion.


Subject(s)
Fragile X Syndrome , Neurodegenerative Diseases , Ataxia/genetics , Ataxia/pathology , Fragile X Syndrome/genetics , Fragile X Syndrome/pathology , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Tremor/genetics , Tremor/pathology , Trinucleotide Repeat Expansion/genetics
14.
J Med Genet ; 59(7): 687-690, 2022 07.
Article in English | MEDLINE | ID: mdl-34193467

ABSTRACT

BACKGROUND: While an association between full mutation CGG-repeat expansions of the Fragile X Mental Retardation 1 (FMR1) gene and connective tissue problems are clearly described, problems in fragile X premutation carriers (fXPCs) CGG-repeat range (55-200 repeats) of the FMR1 gene may be overlooked. OBJECTIVE: To report five FMR1 fXPCs cases with the hypermobile Ehlers-Danlos syndrome (hEDS) phenotype. METHODS: We collected medical histories and FMR1 molecular measures from five cases who presented with joint hypermobility and loose connective tissue and met inclusion criteria for hEDS. RESULTS: Five cases were female and ranged between 16 and 49 years. The range of CGG-repeat allele sizes ranged from 66 to 150 repeats. All had symptoms of hEDS since early childhood. Commonalities in molecular pathogenesis and coexisting conditions between the fXPCs and hEDS are also presented. The premutation can lead to a reduction of fragile X mental retardation protein, which is crucial in maintaining functions of the extracellular matrix-related proteins, particularly matrix metallopeptidase 9 and elastin. Moreover, elevated FMR1 messenger RNA causes sequestration of proteins, which results in RNA toxicity. CONCLUSION: Both hEDS phenotype and premutation involvement may co-occur because of related commonalities in pathogenesis.


Subject(s)
Ehlers-Danlos Syndrome , Fragile X Syndrome , Child, Preschool , Ehlers-Danlos Syndrome/complications , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/complications , Fragile X Syndrome/genetics , Fragile X Syndrome/pathology , Heterozygote , Humans , Male , Phenotype , Trinucleotide Repeat Expansion/genetics
15.
Genes (Basel) ; 12(12)2021 11 27.
Article in English | MEDLINE | ID: mdl-34946857

ABSTRACT

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and autism caused by the instability of a CGG trinucleotide repeat in exon 1 of the FMR1 gene. The co-occurrence of FXS with other genetic disorders has only been occasionally reported. Here, we describe three independent cases of FXS co-segregation with three different genetic conditions, consisting of Duchenne muscular dystrophy (DMD), PPP2R5D--related neurodevelopmental disorder, and 2p25.3 deletion. The co-occurrence of DMD and FXS has been reported only once in a young boy, while in an independent family two affected boys were described, the elder diagnosed with FXS and the younger with DMD. This represents the second case in which both conditions coexist in a 5-year-old boy, inherited from his heterozygous mother. The next double diagnosis had never been reported before: through exome sequencing, a girl with FXS who was of 7 years of age with macrocephaly and severe psychomotor delay was found to carry a de novo variant in the PPP2R5D gene. Finally, a maternally inherited 2p25.3 deletion associated with a decreased level of the MYT1L transcript, only in the patient, was observed in a 33-year-old FXS male with severe seizures compared to his mother and two sex- and age-matched controls. All of these patients represent very rare instances of genetic conditions with clinical features that can be modified by FXS and vice versa.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/pathology , Megalencephaly/pathology , Muscular Dystrophy, Duchenne/pathology , Mutation , Nerve Tissue Proteins/genetics , Protein Phosphatase 2/genetics , Transcription Factors/genetics , Adult , Child , Child, Preschool , Female , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Humans , Male , Megalencephaly/genetics , Megalencephaly/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Exome Sequencing/methods
16.
Genes (Basel) ; 12(11)2021 10 22.
Article in English | MEDLINE | ID: mdl-34828275

ABSTRACT

FMR1 (FMRP translational regulator 1) variants other than repeat expansion are known to cause disease phenotypes but can be overlooked if they are not accounted for in genetic testing strategies. We collected and reanalyzed the evidence for pathogenicity of FMR1 coding, noncoding, and copy number variants published to date. There is a spectrum of disease-causing FMR1 variation, with clinical and functional evidence supporting pathogenicity of five splicing, five missense, one in-frame deletion, one nonsense, and four frameshift variants. In addition, FMR1 deletions occur in both mosaic full mutation patients and as constitutional pathogenic alleles. De novo deletions arise not only from full mutation alleles but also alleles with normal-sized CGG repeats in several patients, suggesting that the CGG repeat region may be prone to genomic instability even in the absence of repeat expansion. We conclude that clinical tests for potentially FMR1-related indications such as intellectual disability should include methods capable of detecting small coding, noncoding, and copy number variants.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Fragile X Syndrome/pathology , Trinucleotide Repeat Expansion/genetics , 5' Untranslated Regions , Adult , Female , Fragile X Syndrome/epidemiology , Gene Frequency , Genetic Association Studies , Humans , Infant , Infant, Newborn , Male , Mutation , Open Reading Frames/genetics , Pregnancy , RNA, Messenger/genetics , Sequence Deletion , Trinucleotide Repeats/genetics
17.
Cell Rep ; 37(6): 109993, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34758329

ABSTRACT

Parvalbumin and somatostatin inhibitory interneurons gate information flow in discrete cortical areas that compute sensory and cognitive functions. Despite the considerable differences between areas, individual interneuron subtypes are genetically invariant and are thought to form canonical circuits regardless of which area they are embedded in. Here, we investigate whether this is achieved through selective and systematic variations in their afferent connectivity during development. To this end, we examined the development of their inputs within distinct cortical areas. We find that interneuron afferents show little evidence of being globally stereotyped. Rather, each subtype displays characteristic regional connectivity and distinct developmental dynamics by which this connectivity is achieved. Moreover, afferents dynamically regulated during development are disrupted by early sensory deprivation and in a model of fragile X syndrome. These data provide a comprehensive map of interneuron afferents across cortical areas and reveal the logic by which these circuits are established during development.


Subject(s)
Cerebral Cortex/pathology , Fragile X Mental Retardation Protein/physiology , Fragile X Syndrome/pathology , Interneurons/pathology , Presynaptic Terminals/pathology , Sense Organs/pathology , Synapses/pathology , Animals , Cerebral Cortex/metabolism , Female , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Interneurons/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Pathways , Presynaptic Terminals/metabolism , Rabies virus/genetics , Sense Organs/metabolism , Synapses/metabolism
18.
Cells ; 10(10)2021 10 01.
Article in English | MEDLINE | ID: mdl-34685590

ABSTRACT

The alteration of excitatory-inhibitory (E-I) balance has been implicated in various neurological and psychiatric diseases, including autism spectrum disorder (ASD). Fragile X syndrome (FXS) is a single-gene disorder that is the most common known cause of ASD. Understanding the molecular and physiological features of FXS is thought to enhance our knowledge of the pathophysiology of ASD. Accumulated evidence implicates deficits in the inhibitory circuits in FXS that tips E-I balance toward excitation. Deficits in interneurons, the main source of an inhibitory neurotransmitter, gamma-aminobutyric acid (GABA), have been reported in FXS, including a reduced number of cells, reduction in intrinsic cellular excitability, or weaker synaptic connectivity. Manipulating the interneuron activity ameliorated the symptoms in the FXS mouse model, which makes it reasonable to conceptualize FXS as an interneuronopathy. While it is still poorly understood how the developmental profiles of the inhibitory circuit go awry in FXS, recent works have uncovered several developmental alterations in the functional properties of interneurons. Correcting disrupted E-I balance by potentiating the inhibitory circuit by targeting interneurons may have a therapeutic potential in FXS. I will review the recent evidence about the inhibitory alterations and interneuron dysfunction in ASD and FXS and will discuss the future directions of this field.


Subject(s)
Autistic Disorder , Fragile X Syndrome , Interneurons/pathology , Animals , Autistic Disorder/metabolism , Autistic Disorder/pathology , Fragile X Syndrome/metabolism , Fragile X Syndrome/pathology , Humans
19.
Int J Mol Sci ; 22(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34502075

ABSTRACT

Fragile X-related disorders (FXDs), also known as FMR1 disorders, are examples of repeat expansion diseases (REDs), clinical conditions that arise from an increase in the number of repeats in a disease-specific microsatellite. In the case of FXDs, the repeat unit is CGG/CCG and the repeat tract is located in the 5' UTR of the X-linked FMR1 gene. Expansion can result in neurodegeneration, ovarian dysfunction, or intellectual disability depending on the number of repeats in the expanded allele. A growing body of evidence suggests that the mutational mechanisms responsible for many REDs share several common features. It is also increasingly apparent that in some of these diseases the pathologic consequences of expansion may arise in similar ways. It has long been known that many of the disease-associated repeats form unusual DNA and RNA structures. This review will focus on what is known about these structures, the proteins with which they interact, and how they may be related to the causative mutation and disease pathology in the FMR1 disorders.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Trinucleotide Repeat Expansion , Animals , Fragile X Mental Retardation Protein/chemistry , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/metabolism , Fragile X Syndrome/pathology , Humans
20.
Nucleic Acids Res ; 49(16): 9479-9495, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34358321

ABSTRACT

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder caused by a limited expansion of CGG repeats in the FMR1 gene. Degeneration of neurons in FXTAS cell models can be triggered by accumulation of polyglycine protein (FMRpolyG), a by-product of translation initiated upstream to the repeats. Specific aims of our work included testing if naphthyridine-based molecules could (i) block FMRpolyG synthesis by binding to CGG repeats in RNA, (ii) reverse pathological alterations in affected cells and (iii) preserve the content of FMRP, translated from the same FMR1 mRNA. We demonstrate that cyclic mismatch binding ligand CMBL4c binds to RNA structure formed by CGG repeats and attenuates translation of FMRpolyG and formation of nuclear inclusions in cells transfected with vectors expressing RNA with expanded CGG repeats. Moreover, our results indicate that CMBL4c delivery can reduce FMRpolyG-mediated cytotoxicity and apoptosis. Importantly, its therapeutic potential is also observed once the inclusions are already formed. We also show that CMBL4c-driven FMRpolyG loss is accompanied by partial FMRP reduction. As complete loss of FMRP induces FXS in children, future experiments should aim at evaluation of CMBL4c therapeutic intervention in differentiated tissues, in which FMRpolyG translation inhibition might outweigh adverse effects related to FMRP depletion.


Subject(s)
Ataxia/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Naphthyridines/pharmacology , Tremor/genetics , Trinucleotide Repeat Expansion/drug effects , Apoptosis/drug effects , Ataxia/drug therapy , Ataxia/pathology , Cell Proliferation/drug effects , Fragile X Mental Retardation Protein/antagonists & inhibitors , Fragile X Syndrome/drug therapy , Fragile X Syndrome/pathology , HeLa Cells , Humans , Ligands , Neurons/drug effects , Neurons/pathology , Peptides/genetics , Protein Biosynthesis/drug effects , Surface Plasmon Resonance , Tremor/drug therapy , Tremor/pathology , Trinucleotide Repeat Expansion/genetics , Trinucleotide Repeats/drug effects , Trinucleotide Repeats/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...